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ABSTRACT

Every cloud parameterization contains structural model errors. The source of these errors is difficult to
pinpoint because cloud parameterizations contain nonlinearities and feedbacks. To elucidate these model
inadequacies, this paper uses a general-purpose ensemble parameter estimation technique. In principle, the
technique is applicable to any parameterization that contains a number of adjustable coefficients. It opti-
mizes or calibrates parameter values by attempting to match predicted fields to reference datasets. Rather
than striving to find the single best set of parameter values, the output is instead an ensemble of parameter
sets. This ensemble provides a wealth of information. In particular, it can help uncover model deficiencies
and structural errors that might not otherwise be easily revealed. The calibration technique is applied to an
existing single-column model (SCM) that parameterizes boundary layer clouds. The SCM is a higher-order
turbulence closure model. It is closed using a multivariate probability density function (PDF) that repre-
sents subgrid-scale variability. Reference datasets are provided by large-eddy simulations (LES) of a variety
of cloudy boundary layers. The calibration technique locates some model errors in the SCM. As a result,
empirical modifications are suggested. These modifications are evaluated with independent datasets and
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found to lead to an overall improvement in the SCM’s performance.

1. Introduction

Weather and climate models need to simulate a va-
riety of boundary layer clouds, such as cumulus, stra-
tocumulus, and cumulus-under-stratocumulus. Because
these clouds are subgrid scale, they must be parameter-
ized. Such parameterization packages should be gen-
eral enough to simulate any type of cloudy boundary
layer that may develop in a forecast or simulation. The
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parameterizations contain approximate equations gov-
erning the sources and transport of heat, moisture, and
momentum. Each of these equations contains several
terms, such as the turbulent transport of the quantity of
interest. Many of the terms must be modeled approxi-
mately and hence contain undetermined parameters.

Such parameters are unavoidable. They control, at a
minimum, eddy diffusivity and microphysics. Further-
more, these parameters cannot be derived theoretically
from first principles. Rather, they must be fitted to data
of some sort, either directly or indirectly. That is, the
parameters must be estimated or calibrated (Jackson et
al. 2003, 2004; Carrio et al. 2006).

Recent advancements in ensemble-based approaches
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to parameter estimation have resulted in a surge of
interest in the numerical weather prediction community
and the climate community. For example, ensemble
Kalman filter (EnKF) methods (Evensen 1994) have
been used for simultaneous state and parameter esti-
mation. Hacker and Snyder (2005) used EnKF to as-
similate surface layer observations in a boundary layer
model and estimate the moisture availability param-
eter. Aksoy et al. (2006a,b) performed state and param-
eter estimation for a two-dimensional sea-breeze model
and numerical weather predictions using the fifth-
generation Pennsylvania State University—National
Center for Atmospheric Research (PSU-NCAR)
Mesoscale Model (MMS). Zupanski and Zupanski
(2006) proposed a method to estimate model errors
using an ensemble data assimilation and state augmen-
tation. EnKF methods have also been applied to pa-
rameter estimation in climate models of intermediate
complexity (Annan et al. 2005a,b).

Despite this increased interest, this process of cali-
bration has a somewhat sordid reputation in the param-
eterization community. Although every cloud param-
eterization is calibrated at least informally as a stand-
alone single-column model, the calibration of cloud
parameterizations is barely discussed in the literature
(see, however, Emanuel and Zikovié-Rothman 1999).
The reputation of calibration suffers because one often
suspects that calibration has been used to mask struc-
tural model errors. A structural error is a type of model
deficiency in which there is a misspecification of a
term’s functional form, not merely a misspecification of
a parameter value. This paper argues that the evil here
is not calibration per se, but rather model structural
error; calibration should not be marginalized, but
rather exploited to detect model error.

Two common symptoms of structural error are un-
derfitting and overfitting (Geman et al. 1992; Moody
1994; Wilks 1995).

Underfitting occurs when a model’s structure is not
rich enough to capture true variability in a dataset. In
such situations, calibration techniques can distinguish
true structural errors from merely poor parameter val-
ues, which are not easy to distinguish otherwise. In one
common example, a good fit to a data case cannot be
achieved despite calibrating all parameter values. Then
the remaining errors must be structural in some sense.
Another more subtle situation occurs when no single
set of parameter values yields a good fit for all cases in
the dataset, even though good parameter values can be
obtained for each case separately. In this instance, dif-
ferences in the parameter values in the separate cali-
brations can provide clues about the source of struc-
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tural error. In these situations, calibration does not hide
errors, but exposes them.

Opverfitting occurs when too many parameters are
fitted using too few data. Overfitting may hide struc-
tural errors because it may introduce compensating er-
rors between terms. This occurs when, in the process of
fitting a model to a limited dataset, erroneous param-
eter values are inadvertently chosen such that one term
cancels structural errors in another. It is nontrivial to
detect compensating errors when individual terms are
not directly observed, as is often the case. If the struc-
tural errors persist undetected, then the overfitted
model is unlikely to match other, different datasets. In
this situation, the model suffers an undesired loss of
generality. However, a means to mitigate overfitting is
cross validation against independent datasets.

This paper applies an ensemble parameter estimation
technique to a single-column model (SCM) for bound-
ary layer clouds and turbulence. Our two main goals
are to 1) detect structural model errors in the SCM and
2) improve the SCM’s fit over a broad range of cloud
regimes.

The structure of this paper is as follows. In section 2,
we outline the SCM that we calibrate. In section 3, we
describe our ensemble-based parameter estimation
framework. In section 4, we discuss the initial param-
eter estimation experiments and the model deficiencies
revealed by them. In section 5, we propose empirical
model modifications and test them with reference
large-eddy simulation (LES) datasets. In section 6, we
cross validate these modifications using independent
datasets.

2. Description of SCM

Our SCM simulates boundary layer clouds and is
fully described in Golaz et al. (2002a). Briefly, the SCM
is a higher-order turbulence closure model that uses a
multivariate probability density function (PDF) to close
higher-order turbulence and buoyancy terms. The mul-
tivariate PDF represents the horizontal subgrid-scale
variability of vertical velocity, temperature, and total
moisture. A functional form of the PDF is specified,
and for each vertical level and time step, moments for
that functional form are predicted (such as mean, stan-
dard deviation, etc.), thus allowing the PDF to vary
with height and time. The underlying functional form of
the PDF is a mixture of two trivariate Gaussians. The
shape was determined empirically from both aircraft
measurements and LES data by Larson et al. (2002)
with further modifications by Larson and Golaz (2005).
In Golaz et al. (2002b), the SCM was found to perform
satisfactorily over a range of boundary layer regimes
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comprising clear convection, trade wind shallow cumu-
lus, shallow convection over land, and nighttime stra-
tocumulus. These regimes were all simulated without
any case-specific adjustments or trigger functions.
Nonetheless, the SCM contains deficiencies whose
sources can be difficult to pinpoint.

The deficiencies became more apparent when the
SCM was used to simulate a challenging stratocumulus
case, the first research flight (RF01) of the second
Dynamics and Chemistry of Marine Stratocumulus
(DYCOMS-II) field study (Stevens et al. 2003). RF01
was characterized by a strong inversion at cloud top.
This inversion was such that stability criteria proposed
by Randall (1980) and Deardorff (1980) would have
predicted the cloud to dissipate. However, the cloud
was observed to persist. As was the case for some LES
models (Stevens et al. 2005), our SCM produced a
cloud layer that thinned unrealistically over time. To
obtain a more reasonable evolution of the cloud layer
(Zhu et al. 2005), we modified the mixing length. The
present research was partly motivated by the desire to
investigate whether the original SCM’s difficulty with
the DYCOMS-II RF01 case was a structural model er-
ror or instead a suboptimal choice of parameter values.

3. Ensemble-based parameter estimation
framework

Our boundary layer cloud SCM, like most others,
contains nonlinear dynamics and multiple parameters.
Given this complexity, it can be difficult to predict the
consequences of a particular change in parameter val-
ues. This hampers calibration by hand. To expedite the
process of parameter estimation, we develop an auto-
mated calibration framework.

A number of factors guided our choice of a param-
eter estimation algorithm:

1) Our single-column model is computationally inex-
pensive compared to three-dimensional models, and
the number of parameters we want to estimate is
moderate. Therefore, the efficiency of the param-
eter estimation algorithm is not an urgent concern.

2) We wish to use a uniform prior parameter distribu-
tion, so as to enable the algorithm to yield the ab-
errant parameter values that signal model error.

3) We desire a parameter estimation algorithm that is
easy to use, even for individual scientists who have
expertise in cloud parameterization but not in pa-
rameter estimation.

4) Our source of “data” is LES output that is based on
observed cases. Using LES output as data has two
advantages: the LES model can be set up identically
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for ensemble member n

Run SCM
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member n+1

Convergence ?
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FIG. 1. Flowchart illustrating the optimization algorithm for a
single ensemble member.

to the SCM, and the LES outputs difficult-to-
observe fields such as higher-order moments, liquid
water, and cloud fraction. Our goal is limited to
emulating LES output, not observational data.
Therefore, we treat the LES data as perfect input.
Improving the agreement between LES and obser-
vations is a separate project that is beyond our
scope.

Our parameter estimation algorithm allows complete
flexibility in the choice of field(s) to be optimized and
parameter(s) to be estimated. Namely, we can optimize
any combination of prognostic or diagnostic fields pro-
duced by the SCM and contained in the LES data. We
can do so over any time period(s) or altitude range.
Furthermore, we can estimate any combination of pa-
rameters in the SCM. We can also find overall best-fit
parameters for two or more cases (e.g., cumulus and
stratocumulus) at once.

Our parameter estimation algorithm for a single en-
semble member is as follows. Before beginning the pa-
rameter estimation procedure, we select the SCM and
LES output fields that we wish to match. Then we de-
cide which SCM parameters to calibrate, and we choose
initial values for these parameters. Then we perform
the following steps (see Fig. 1 for a flowchart): run the
SCM and evaluate the mismatch between the SCM and
LES using a cost function. If the mismatch falls below a
predetermined threshold, the algorithm stops. Other-
wise, the optimizer chooses a new set of parameter val-
ues and the procedure is repeated until convergence.
The same procedure is repeated for each ensemble
member but with different initial parameter values.
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Central to the parameter estimation algorithm is the
choice of the cost function, /. When errors in the data
are assumed to be Gaussian, the cost function takes the
generic form:

N

1 TeA—1 T
Jm) = 2 > {lg(m) — dy.]"C [gm) — d "}

ey

where N is the number of observations sets. For each
set, there are M observations represented by the vector
d,.. Here g(m) is the corresponding vector of model
predictions obtained with the model parameter set m
and C~' is the inverse of the covariance matrix. It is
often simplified by only keeping its diagonal elements,
namely, the inverse of the squared variances of the ob-
servations (e.g., Jackson et al. 2003, 2004). We apply the
same simplification here.

In our application, g(m) is obtained from the SCM
output [denoted by ggcm(m)] and d,, from the LES
“observations” (d; gg). Both ggcy(m) and d; g5 can
comprise any combination of variables produced by
both the SCM and the LES. They could include mean
profiles, such as liquid water potential temperature 6,
total water mixing ratio g,, cloud fraction, or cloud wa-
ter mixing ratio g.. They could also include any one of
the vertical turbulence moments, such as w'? or w'>. An
arbitrary number of variables can be included in the
cost function. The observations can also include an ar-
bitrary number of LES cases (e.g., cumulus and stra-
tocumulus). Our reference LES data consist of 1-min
averages. Because the LES fields fluctuate intermit-
tently, we do not desire the SCM to mimic a particular
LES evolution minute by minute, but rather the LES
evolution averaged over a longer time window, typi-
cally about 1 h. The specific form of the cost function
becomes

&1 S
J(m) = E E > E {[gSCM(m) —dy s
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Summations are performed over a number of cases
(N,), variables (N,), and time windows (z,). The over-
bar 6“’ denotes the time-averaging operator applied to
a specific time window. Both gy and d, g are vectors
that contain LES and SCM data from every vertical
level within the altitude range of interest. Here S; (m)
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is the contribution to the error from a combination of a
particular case (i) and variable (j).

Because we treat the LES observations as perfect
inputs for the purpose of calibrating our SCM param-
eters, we do not have uncertainties attached to our ob-
servations that can be used to estimate the desired vari-
ances o;;. Instead, we set o;; in Eq. (2) such that con-
tributions from each case and each variable have equal
weights in the initial value of the cost function:

and j=1...N,,
(©)

where §;;(mg) denotes the initial error contribution.
Equation (3) allows us to include disparate variables
and results in each dataset and variable having an equal
opportunity at reducing the overall cost function. Note
that this initial weighting could be altered if a modeler
had expert opinion indicating that one case or one vari-
able should be overweighed compared to another one.

The optimization algorithm that we use is the down-
hill simplex method (Press et al. 1992). The simplex
algorithm is not as efficient as some others, but high
efficiency is not our first priority because SCMs are
computationally inexpensive. For instance, our SCM
can simulate 6 h of cloud evolution within seconds on a
desktop personal computer. An additional benefit of
the method is that it avoids the need to develop a model
adjoint code, thereby greatly simplifying the coding and
implementation. We stress that the choice of a particu-
lar optimization scheme is not of fundamental impor-
tance. The SCM’s low computational expense allows us
to employ other readily available optimization
schemes, such as a conjugate gradient method with fi-
nite-difference estimates of the Jacobian.

The minimization of J proceeds on a N-dimensional
surface, where N is the number of parameters that we
wish to estimate. Because of the complexity and dimen-
sionality of J, the topology likely consists of a large
number of local valleys and floors where the minimiza-
tion may stop. Therefore, it would be naive to assume
that a single optimization will reach the best minimum.
In fact, a single “best” minimum may not even exist;
instead, a given function J may possess many compara-
bly good minima. For this reason, we choose to perform
an ensemble of minimizations.

Each ensemble member starts from slightly different
initial conditions. The initial conditions consist of a sim-
plex of N + 1 points on the N-dimensional surface. For
instance, on a two-dimensional surface, the initial sim-
plex is a triangle. The initialization is schematically il-
lustrated in Fig. 2 for a two-dimensional case with four
ensemble members. For each parameter to be cali-

c

o;; =S, my) for i=1...N
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TABLE 1. Initial values and ranges of the 10 parameters for the

Pz e Pisge . ©2 initial calibration experiments. Also shown are the model vari-
ables or components directly affected by these parameters.
P,
Initial range
P, P, Py P, Parameter Direct impact Py Puinj  Praxj
Proing Poaxy €1 Praina Puaxa ©1 w'? (dissipation) 2.5 1.0 4.0
C, q/%, 0%, q,0; (dissipation) 1.5 0.5 2.5
Cs w'? (pressure term) 0.3 0.1 0.5
P9 Cs wql, w0 (pressure 75 30 120
P Prin2 + terms)
Ensemble member #3 Ensemble member #4 G w'q;, w6, (pressure 05 0.1 0.9
€ e __terms)
Pruax2 Ponax2 Cyq w'> (pressure term) 25 1.0 4.0
Py s Cy w'3 (pressure term) 0.5 0.1 0.9
B PDF functional form 1.25 05 2.0
a2, PDF functional form 035 03 0.4
) P, P, P, P . w (X107* s Mixing length 6.0 4.0 8.0
Pruin1 Py GMI;X,I €1 Pn;n,l Proaxa €1
initial set of parameters requires on the order of O(100)
Prins Poinz + iterations before converging. Furthermore, each opti-

FiG. 2. Illustration of the ensemble initialization procedure for
a two-dimensional problem. The hatched triangles represent the
initial simplex for four different ensemble members. They are all
centered around the same point P,,. Points P; and P, are randomly
perturbed along the first and second dimension, respectively, such
that they fall within the allowable initial range (P P

min.j» max,j)'
brated, a broad range of values (P, ;» Pray.) is chosen.
The origin of the simplex (P) lies in the middle of this
parameter space while the remaining vertices are ran-
domly chosen by widely perturbing P, along one par-
ticular dimension. This procedure is designed to assume
little about the parameter values or distributions a
priori; that is, we assume an approximately uniform
prior parameter distribution. Furthermore, the range
(Pumin.. Pmax) applies only to the initial conditions; the
optimization algorithm is free to wander outside this
range.

Since each ensemble member starts from a slightly
different initial simplex, it yields a different optimized
parameter set. This ensemble approach would be
wasteful if the model structure were perfect and the
topology of cost function simple: then each ensemble
member would produce identical results. However, the
complexity of the SCM creates complex structures in
the cost function topology. It is possible to have differ-
ent parameter sets that yield similar cost function val-
ues. As a result, an ensemble approach is well suited
because it can more fully explore the cost function
space.

Because a single SCM simulation takes on the order
of tens of seconds, the overall computational cost of the
methodology is acceptable. An optimization for one

mization within an ensemble is independent of the oth-
ers, thus making the methodology an “embarrassingly
parallel problem” up to the ensemble size.

Our approach to parameter estimation can be cast as
an approximation to a Bayesian stochastic inversion
with a uniform prior parameter distribution (Jackson et
al. 2004). Each ensemble member of optimized param-
eter values does not represent a random draw from the
correct posterior distribution, but rather needs to be
weighted by its (possibly scaled) likelihood given the
LES data. The scaling is necessary to account for inac-
curate estimates of data uncertainty. We approximate
this scaled weighting below by using the 20 ensemble
members with the highest likelihood (lowest cost func-
tion value). This represents a suboptimal weighting that
will produce biases in the estimates of the posterior
distribution, but we feel that the inaccuracy is unimpor-
tant for our qualitative application.

4. Initial parameter estimation experiments

a. Configuration

A total of 10 parameters from the SCM have been
selected for the initial calibration: Cy, C,, Cs, C,, C5, Cy,
Cy1, B, 2, and p. The initial mean values of the 10
parameters and their allowable range at the initial time
are listed in Table 1. The actual model equations in
which all these parameters occur can be found in Golaz
et al. (2002a) and Larson and Golaz (2005). For conve-
nience, the prognostic equations are also listed in the
appendix. The C; controls the dissipation rate of the
vertical velocity variance w'?. The C, controls the dis-
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sipation rates of the scalar variances and covariance ?,
6;%, and q,0;. The Cs appears in the parameterization of
the pressure correlation term in the w'? equation. Both
Cs and C; appear in the pressure correlation terms of
the scalar flux equations w'q’, and w'6;. Both Cg and
C,; are part of the pressure term parameterization in
the third moment vertical velocity w'>. The parameters
B and &2 arise from the PDF functional form. The B
appears in the diagnostic relationship linking the skew-
ness of 6, and g, to the predicted skewness of w. The &2
controls the width of the individual Gaussians in the
PDF. Finally, p is a mixing time scale used in the com-
putation of the mixing length.

Initially, we estimate parameter values for two
boundary layer cloud regimes separately. The differ-
ences in parameter values help reveal model structural
errors. Then we estimate parameter values for both
cases simultaneously. Both cases were previously simu-
lated in LES intercomparisons of the Global Water and
Energy Experiment (GEWEX) Cloud System Studies
Working Group 1 (GCSS-WG1). The setup of both
cases is based on observations. The first regime is a
trade wind cumulus regime based on the Barbados
Oceanographic and Meteorological Experiment
(BOMEX; Siebesma et al. 2003). The second is a ma-
rine stratocumulus case, DYCOMS-II RF01, hereafter
referred to as RF01 (Stevens et al. 2005). For each case,
the SCM is calibrated against LES results obtained with
a version of the Coupled Ocean—Atmosphere Mesos-
cale Prediction System (COAMPS) that is suitably
modified for LES scales, which we call “COAMPS-
LES” (Golaz et al. 2005). The COAMPS-LES results
look similar to other LES results in the intercompari-
sons. BOMEX and RF01 are selected because they rep-
resent different ends of the boundary layer cloud re-
gime spectrum. We calibrate only two cases in order to
avoid overfitting.

The variables appearing in the cost function in (2) are
chosen to be cloud fraction and cloud water mixing
ratio. Because a major goal of the SCM is to produce
realistic clouds, the selection of these cloud variables is
natural. The time windows ¢, are as follows. BOMEX is
a 6-h-long simulation, and we select three 1-h windows,
consisting of the fourth, fifth, and sixth simulation
hours. RF01 is a 4-h-long simulation, and we select the
third and fourth hours as time windows. The initial ex-
periments we present consist of three ensembles: one
that uses BOMEX data exclusively (B1) in the optimi-
zation, a second that uses only RF01 data (D1), and a
third that combines both BOMEX and RF01 (BD1).
Each experiment consists of an ensemble of 400 mem-
bers. A complete list of all experiments is provided in
Table 2.
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TABLE 2. Summary of all ensemble-based parameter estimation
experiments. Cloud fraction is abbreviated as c.

No. of LES
Category Name Size parameters LES cases fields
Initial B1 400 10 BOMEX ¢, q.
D1 400 10 RFO01 ¢ q,.
BD1 400 10 BOMEX and ¢, 7.

RF01
Revised B2 400 14 BOMEX ¢, q,
D2 400 14 RFO01 ¢, q.
BD2 400 14 BOMEX and ¢, q.

RF01

b. Results

Results of the initial parameter estimation experi-
ments are shown as scatterplots in Fig. 3. In the scat-
terplots, each dot represents one ensemble member.
The dots are color coded by experiment: green for
BOMEX (B1), red for RF01 (D1), and blue for the
combined experiment (BD1). The horizontal axes rep-
resent the final parameter value, and the vertical axes
represent the normalized cost function end value: J=
JI in, Where J, ;.. is the lowest cost function value of the
ensemble. Here J;, is computed separately for each
ensemble. Therefore, the best fitting members (as mea-
sured by J) within a given ensemble reside on the lower
portion of each panel, and the worst reside in the upper
portion.

For each of the 10 parameters, the scatterplots reveal
a surprisingly large spread in the final parameter values
compared to the initial range (gray shaded area). The
plots clearly illustrate the implausibility of finding a
global minimum that is substantially better than other
local minima and justifies the use of an ensemble-based
optimization approach. For a number of parameters,
the posterior parameter distribution is actually wider
than the prior distribution. This seems counterintuitive
at first, but it results from the fact that parameter values
covary with each other. The product of the optimiza-
tion is really an ensemble of parameter sets drawn from
a single 10-dimensional distribution and not indepen-
dent parameters drawn from 10 separate 1D distribu-
tions. Scatterplots can only depict the marginal projec-
tions of this multidimensional distribution and cannot
reveal how parameters covary. Therefore, changing one
and only one parameter value to another arbitrary
value within the range of the scatterplot is likely to
worsen the fit, because it would neglect the covariation
with other parameters. Also, because of this covariation
between parameters, it would not be justifiable to select
the mean of each marginal parameter distribution as an
optimum parameter value. Identification of the covari-
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FiG. 3. Results of the initial parameter estimation experiments (B1, D1, and BD1). Each
panel represents 1 of the 10 parameters. The horizontal axis is the final parameter value, and
the vertical axis the normalized error, J, of a given optimization with respect to the best
member of the ensemble. Each optimization is represented by a single dot. Green dots are for
the BOMEX ensemble (B1), red dots are for the RF01 ensemble (D1), and blue dots are for
the combined ensemble (BD1). The gray shaded areas indicate the initial allowable parameter

ranges.

ance between parameters is a benefit of the ensemble
approach that is not exploited in the current work. Un-
derstanding how best to utilize the covarying informa-
tion is the subject of ongoing research.

It is also interesting to note that some parameter
values lie outside their physically expected range. Spe-
cifically, Cs, C;, Cg, and Cy; are expected to be positive
but are negative in some optimization runs. Our algo-
rithm does not explicitly restrict the range of parameter
values, except when the values numerically destabilize

the SCM, in which case the cost function is set to a large
penalty value.

The optimized parameter distribution reveals some
unexpected features. For some parameters, the distri-
butions for BOMEX (green dots) and RF01 (red dots)
overlap considerably, whereas other parameter distri-
butions overlap only slightly. In particular, note the
small overlap between green and red dots for C,; and
Cy;. This small overlap indicates underfitting, which is
symptomatic of model structural error.
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Fi1G. 4. Distributions of the final parameter values for the 20 lowest / ensemble members of
the initial parameter estimation experiments (B1, D1, and BD1). The values are normalized
by the initial parameter value to show the departure of the end value compared to the initial
value. Each box plot shows the minimum, first quartile, median, third quartile, and maximum

values of the distribution.

Figure 4 displays the same results using standard box
plots. Because the quality of the parameter sets can
vary substantially between the best and the worst en-
semble member, we focus only on the 20 best ensemble
members for each experiment. The parameters are nor-
malized by their initial values to show their relative
departure. These box plots clearly reveal that the cali-
bration experiments for BOMEX and RFO01 tend to
favor different values for C; and C,;. Parameter values
for the combined experiment lie in between.

Profiles from the SCM simulations using the 20 best
parameter sets are depicted in Figs. 5 and 6. The pro-

files shown are mean liquid water potential tempera-
ture (6,), mean total and cloud water mixing ratios (g,,
q.), cloud fraction, and the second and third central
moments of the vertical velocity (w'%, w'*). For BOMEX
(Fig. 5), the calibrated SCM runs are able to adequately
reproduce the LES profiles. Note that only the cloud
fraction and g, enter the definition of the cost function
J. The 6, q,, w'?, w'> are not directly driven to match
the corresponding LES profiles. This shows that rea-
sonable physical constraints are embedded in the SCM.
However, none of the simulations accurately repro-
duces the cloud fraction near the cloud base. This ap-
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F1G. 5. Comparison of the COAMPS-LES profiles (black) with the 20 lowest J value SCM
simulations for the BOMEX ensemble (B1, green) and combined ensemble (BD1, blue) of the
initial parameter estimation experiments. Profiles shown are liquid water potential tempera-
ture (6,), total and cloud water mixing ratios (g,, g.), cloud fraction, and second and third
moments of the vertical velocity (w'?, w'?). They are averaged over the last 3 h of the
simulation. The gray-shaded areas indicate the range (minimum and maximum bounds) of
other LES models from the intercomparison.




4086

1200
1000
800

600

Height (m)

400

200

1200

1000

800 |

600

Height (m)

400

200

1200

1000

800

600

Height (m)

MONTHLY WEATHER REVIEW

_DYCOMS-II RFO01 Hour 4
qs

O

Pl R

L L L L B B N

B R A i

1200

1000

800

600

Height (m)

400

200

LI L LI N LI R LA B

290 295 300 305
K

Cloud fraction

o

| AL LANLANLE LU N N L N B R |

RN (PPN PPN PP | P ||

1200

1000

800

600

Height (m)

400

200

LI L LA L BB B

LI L
I I I I I

o b o b b 1l

0 20 40 60 80 100
Y%

w'?

0.00

010 020 030 040 050
-1
gkg
’
w'3

0.00

0.10

0.20
m?s®

030 040

0.50

1200

1000

800

600

Height (m)

400

200

LI L L R

= |ES
— D1
—— BDI1

-0.10

0.00 0.10
mSS-G

020 0.30

Fi1G. 6. Same as in Fig. 5, but for RFO1. Red lines are SCM results from the RF01 ensemble
(D1) and blue lines are from the combined ensemble (BD1). Profiles are averaged over the
last simulation hour. LES model range is shown with gray-shaded areas, where available.

pears to be a manifestation of a model deficiency that
cannot be corrected by simple parameter recalibration.
The differences between the SCM members obtained
from the BOMEX experiment (B1, green) and the
combined one (BD1, blue) show larger values of liquid
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water and to a lesser degree cloud fraction for the com-
bined experiments while the other profiles remain com-
parable.

The RF01 profiles paint a different picture (Fig. 6).
Even though cloud water for the DYCOMS RFO01 en-
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semble (D1, red) and the combined ensemble (BD1,
blue) appear comparable, some significant differences
are present in other fields. In particular, the combined
ensemble has difficulties reproducing the profiles of g,
and w'?. The SCM is unable to produce a well-mixed
total water profile, an indication of a poor representa-
tion of boundary layer mixing processes. The w'? is
unrealistically negative in the lower portion of the do-
main.

The differences between C, and Cy; values in
BOMEX and RF01 warrant further discussion. The C,
appears in the pressure correlation term for the turbu-
lence fluxes w'q’, and w'6;:

aw'q, 1 ap’
= -4
ot pressure Po (:)Z
Cs 77 ﬁaw —ar
= _TW q: — C7 -w qtg—i_e_oéheu >
4)
ow'; 1 oap’
= — — 61’ —
at pressure Po 9z
Cﬁf/ ﬁaw 8 it
= —TW 0, — C7<—w 6’£+9_06[6v>'
)

The C;, enters in the parameterization of the pressure
correlation term of w'>:

ow'?
ot

— 3 72%

Po 0z

pressure

C o
—— (CySK, + Dw?

—_ow 3g—
— _ 3 o 2
CH( 3w 7z + 0 w 6v>. (6)

Each of the pressure correlation parameterizations
above contains three terms: the first term is a Newto-
nian damping term, the second term is proportional to
ow/dz and is generally negligible, and the third term is
proportional to the relevant buoyancy moment. The
Newtonian term is sometimes called a “return to isot-
ropy” or “slow” term. It always has the opposite sign of
the prognosed moment and therefore acts as a sink. The
last two terms are sometimes called “rapid” terms
(Pope 2000). The buoyancy term can act as a sink or a
source depending on the sign of the buoyancy moment.

LES data reveal that w'> and w'?6,, usually have the
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same sign, making C;; an additional damping term. Cu-
mulus layers have large skewness values, and these
must be permitted by the SCM in order to obtain rea-
sonable cloud properties. To accomplish this, the
BOMEX calibration experiment reveals that the SCM
needs reduced pressure damping and hence smaller Cy;
values. For stratocumulus, the skewness tends to be
small due to the near symmetry between updraft and
downdraft velocities. Maintaining low skewness in
RFO01 is aided by larger C,; values.

The role of the C; term is more complicated. The
buoyancy contribution to the pressure correlation term
in Egs. (4) and (5) is largest in the upper portion of the
cloud layer, both for BOMEX and RFO1, near an in-
version. The inversion is weak and several hundred
meters deep for BOMEX, but very sharp and shallow
for RFO1. Physically, rising eddies are impeded in their
ascent by the presence of the inversion. The kinetic
energy of impeded updrafts is redistributed from the
vertical to the horizontal by the pressure correlation
terms. As a result, the buoyancy contribution to the
pressure term strongly affects the turbulence fluxes
w'q’, and w'6; near the inversion and thereby cloud-top
mixing. As shown by LESs, RF01 is particularly sensi-
tive to cloud-top mixing and entrainment (Stevens et al.
2005). The tight coupling between cloud-top mixing
and C; is the likely cause of RFO1’s preference for
lower values of C5, as revealed by the calibrations.

c. Summary

The initial calibration experiments have revealed
that the SCM simulations agree relatively well with the
reference LES for both BOMEX and RFO01, if the SCM
uses separately calibrated parameter values. A reason-
able time evolution of RF01 can also be simulated with-
out having to change the mixing length formulation, a
finding that was not at all obvious before the experi-
ments were performed.

However, the experiments clearly demonstrate that
improved BOMEX and RF01 require different values
of the parameters C; and C,;. This is undesirable since
the SCM is intended to serve as a general boundary
layer parameterization. We address this issue further in
the next section.

5. Revised parameter estimation experiments

a. Proposed model modifications

One major difference between BOMEX and RFO01,
or more generally between shallow cumulus and stra-
tocumulus clouds, is the vertical velocity skewness,
Sk,, = w"*/w'?>"". The skewness of w measures the
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Skewness dependent parameter value

Skewness of w

Fi1G. 7. Illustration of the skewness-dependency function of the
modified parameters in Egs. (7)-(8). Different values of the de-
nominator in the exponent are plotted for illustration purposes.

asymmetry between updrafts and downdrafts. In shal-
low convection, updrafts tend to be narrow and strong
and the compensating downdrafts are broad and weak,
giving rise to a large positive skewness. For stratocu-
mulus, areas and vertical velocities of updrafts and
downdrafts tend to be comparable, which translates
into small positive or negative skewness values. Based
on the findings of the previous section, we propose to
reformulate the parameters C; and C;; so as to convert
them into skewness-dependent functions:

C5(Sk,,) = Cqpy + (Cyyy — Cople V2SKW/Cr0”, (7)

B >
Cyi(Sk,,) = Cyyp + (Cryy — Ciyple 12EkCe” o (g)

Equation (7) implies that in the limit of small skewness
magnitudes, C; — C,, and in the limit of large skew-
ness, C; — C,,,. The sharpness of the transition between
small and large values is controlled by C,... The form of
the skewness dependency is illustrated in Fig. 7. Equa-
tions (7)—(8) are purely empirical and we make no at-
tempt to justify them theoretically. In essence, they are
simple structural modifications that one can conceive to
remedy the problems uncovered in the previous sec-
tion.

A new set of ensemble-based parameter estimation
experiments is performed using the new formulations
for C; and C,; (B2, D2, and BD2 in Table 2). The
methodology is the same as for the initial experiments,
but the dimensionality of the optimization problem is
now 14. The range and initial values of the newly
introduced parameters are given in Table 3. All the
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TABLE 3. Initial values and ranges of the new parameters for the
revised calibration experiments (B2, D2, and BD2). The initial
values and ranges of the remaining parameters are identical to
those in Table 1.

Initial range

Parameter Py; Pinj Pax;
Cy, 0.5 0.1 0.9
Cop 0.5 0.1 0.9
Cy. 1.0 0.25 1.75
Cii, 0.5 0.1 0.9
Ciip 0.5 0.1 0.9
Cie 1.0 0.25 1.75

other parameters have the same range and value as in
Table 1.

b. Results

The final parameter values of all the members for the
revised experiments B2, D2, and BD2 are shown as
scatterplots in Fig. 8. The overlap between BOMEX
(green points) and RFO01 (red points) ensembles for C,,
and C;;, is now improved compared to Fig. 3. As a
caveat, we note that because the SCM inevitably still
contains structural errors and because we have opti-
mized simultaneously for all parameter values, the op-
timized values have undoubtedly been influenced by
compensating errors between terms. Therefore, an op-
timal parameter value for a given term in our SCM is
not necessarily optimal for the same term in a different
SCM.

We now focus on the SCM profiles of the 20 best
parameter sets of each ensemble. The profiles from the
BOMEX ensemble (B2, green lines; Fig. 9) show little
change compared to the initial experiment (B1, green
lines; Fig. 5). The cloud water profile is improved in the
revised combined experiment (BD2, blue lines), but the
cloud fraction is still underestimated near the cloud
base.

The impact of the modified pressure terms C, and
C;, is more significant for RFO1 (Fig. 10). The RF01
ensemble (D2) and the combined ensemble (BD2)
now both yield SCM results that agree better with
COAMPS-LES. This is in contrast to the initial experi-
ments (Fig. 6) in which the RF01 ensemble (D1) pro-
duced total water mixing ratio profiles that were not
sufficiently well mixed, and had erroneous w'? profiles.

The results from the BD2 ensemble demonstrate that
the modifications made to C, and C;; in Egs. (7)—(8)
allow for the existence of parameter sets that produce
reasonable results for BOMEX and RFO01 simulta-
neously. This was not the case with the unmodified
SCM. Furthermore, before this work was performed, it
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FIG. 8. Same as in Fig. 3, but for the results of the revised parameter estimation experiments (B2, D2, and BD2) with 14 parameters.
Green dots are for the BOMEX ensemble (B2), red dots are for the RF01 ensemble (D2), and blue dots are for the combined ensemble

(BD2).

would have been difficult to identify modifications to
the SCM that would have been likely to faithfully simu-
late both BOMEX and RFO01.

6. Evaluation with independent data

We have intentionally calibrated only two LES cases
and reserved other cases for cross validation in order to
avoid overfitting. To verify that we have indeed
avoided overfitting, we simulate four additional test
cases using the 20 best parameter sets from the BD1
and BD2 ensembles. The additional test cases are all set

up according to the specifications of GCSS intercom-
parisons, which are based loosely on the observations.

The first case is shallow cumulus over land from the
Southern Great Plains (SGP) Atmospheric and Radia-
tion Measurement (ARM) site (Brown et al. 2002). The
simulation starts in the morning with clear skies. As the
day progresses, the boundary layer deepens due to the
surface fluxes. Fair-weather cumulus clouds develop,
grow progressively during the day, and dissipate before
the simulation’s end at about sundown.

The second case involves cumulus clouds rising under
a broken stratocumulus deck (Stevens et al. 2001). It is
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F1G. 9. Same as in Fig. 5, but for the revised parameter estimation experiments (B2 and
BD2). Green lines are the SCM results from the BOMEX ensemble (B2) and blue lines are

from the combined ensemble (BD2).

idealized from data collected during the Atlantic Trade
Wind Experiment (ATEX). The cloud fraction in the cu-
mulus layer is less than 10%. In the overlying stratiform
layer, the cloud fraction varies significantly from one LES
model to another; the range is approximately 20%-80%.

The last two cases are both nocturnal stratocumulus-
topped layers. One is based on observations from the
First International Satellite Cloud Climatology Project
(ISCCP) Regional Experiment (FIRE; Moeng et al.
1996). There was a large spread in LES results, partly
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because the intercomparison did not specify the form of — ack/gcss9/index.html). Here we focus on the nondriz-
the cloud-top radiative forcing. The second stratocumu-  zling RF02 case.

lus case is based on the second research flight (RF02) of Figure 11 shows the SCM cloud properties obtained
the DYCOMS-II field experiment (for a description of ~ with the 20 best parameter sets from the ensembles
the intercomparison, see http://sky.arc.nasa.gov:6996/ BD1 (blue) and BD2 (orange) and compares them with
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COAMPS-LES (black). The main interest is in com-
paring the BD1 and BD2 SCM profiles, which are the
“before” and “after” pictures showing the effects of our
empirical modifications.

The biggest difference occurs for RF02, where the
BD2 SCM (after) cloud water profiles are markedly
superior to the BD1 (before) profiles. Most BD1 en-
semble members predict liquid water amount near the
cloud top that underestimates the LES value by nearly
50%. In contrast, the BD2 ensemble members almost
exactly match the LES.

The BD2 FIRE cloud properties appear to suffer a
slight degradation in BD2 compared to BD1. Given the
uncertainties surrounding the specifications of this case,
one should be cautious with respect to the significance
of this degradation. For example, a simulation using a
different LES model produced a liquid water amount of
0.25 g kg~ ! near the cloud top (Golaz et al. 2002b, their
Fig. 12d), much closer to the BD2 values.

For ARM and ATEX, the changes between BD1 and
BD2 are modest. ARM results both underestimate the
cloud amount compared to the LES. These profiles are
actually slightly worse than the results published in Go-
laz et al. (2002b). However, since BD1 and BD2 pro-
files are qualitatively similar, the degradation does not
stem from the SCM modifications we made [Egs. (7)
and (8)], but rather from the values of the parameters
themselves.

On balance, the empirical changes made to C; and
Ci; [Egs. (7) and (8)] are beneficial to RF02, neutral to
ARM and ATEX, and slightly negative for FIRE.
Given that these changes are solely based on BOMEX
and RFO01 datasets, we can safely state that we have
avoided an overfitting situation and hence can have
some confidence in the generality of the SCM modifi-
cations, despite their empirical nature.

7. Conclusions

We have presented an ensemble method of param-
eter estimation. It has four chief advantages:

1) It allows complete flexibility in the choice of param-
eters to be estimated and fields to be optimized. For
instance, we may simultaneously estimate any com-
bination of the parameters in Tables 1 and 3 (i.e., C,,
C,, and so forth). Furthermore, we may optimize
any combination of fields (e.g., cloud fraction and
liquid water) that are produced by the SCM and
contained in the LES data.

2) The method is conceptually straightforward.

3) The method is easy to implement, because it does
not require writing an adjoint of the model code.

GOLAZ ET AL.

4093

4) The method produces an ensemble of sets of best-fit
parameter values. This is useful in cases in which the
cost function contains many comparable local
minima. The ensemble methodology provides not
only the range of acceptable values of parameters,
but also information about how the best-fit param-
eter values covary with each other.

We have used the ensemble parameter estimation
method to calibrate a single-column model (SCM) of
boundary layer clouds. The “data” used are output
from six large-eddy simulations (LES). These consist of
three stratocumulus cases, a trade wind cumulus case, a
continental cumulus case, and a cumulus-under-
stratocumulus case. We calibrate 10 SCM parameters
simultaneously against profiles of cloud fraction and
liquid water.

In calibrating the SCM, we sought to avoid the op-
posing problems of overfitting and underfitting.

To avoid overfitting, we fit only two fields, cloud
fraction and liquid water, and two cases, the BOMEX
trade wind cumulus case and the DYCOMS-II RF01
marine stratocumulus case. Other fields and cases were
used for cross validation. That is, they were used to
verify that the chosen parameter values fit well gener-
ally, not merely for the two fields and cases used in the
calibration.

To diagnose the cause of underfitting, we calibrated
BOMEX and RFO01 separately, thereby obtaining two
sets of parameter values. The separate calibrations re-
vealed differences in the values of the parameters C,
and C,,. Assessing the significance of these differences
was made possible by the ensemble methodology,
which clearly showed the lack of overlap in the accept-
able parameter values. This demonstrates that calibra-
tion need not obscure model structural error; in fact, if
used strategically, calibration may reveal structural er-
rors. We then replaced the parameters C; and C;; by
the empirical functions of skewness. This structural
modification ameliorated the underfitting and permit-
ted the SCM to model all six cloud cases more accu-
rately without case-specific adjustments.

Although the parameter estimation technique can
help identify the existence of model structural errors, it
cannot propose new ideas to fix those errors. Neverthe-
less, automated parameter estimation does speed up
the process of model development because it allows
rapid recalibration when a new model improvement is
introduced. This is useful because the introduction of a
true model improvement often produces a worse fit to
data, since errors in other parts of the model are no
longer compensated.

A product of the ensemble approach to parameter
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estimation is a covarying distribution of parameter val-
ues. In this work we focused only on distributions of
individual parameter values, but there is likely useful
information in the higher moments of the parametric
distribution. Additionally, we never expect our param-
eterization to be perfect, and the distribution of param-
eter values provides information about how parameters
need to be altered to mimic inadequacies in the model.
These distributions could potentially be exploited to
develop stochastic parameterizations for use in en-
semble forecast integrations.

In general, ensemble parameter estimation tech-
niques are applicable to a wide range of other param-
eterizations, such as land surface (Jackson et al. 2003)
or deep convective parameterizations (Emanuel and
Zikovié-Rothman 1999). Also, general circulation mod-
els may benefit in the future, when computational
power has increased. A single cloud parameterization
containing subparameterizations for each term is analo-
gous to a single climate model containing different pa-
rameterizations for radiative transfer, gravity wave
drag, and so forth. Both suffer the problem of compen-
sating errors and model structural errors, and both may
benefit from tools to diagnose those errors.
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APPENDIX

Model Predictive Equations

The SCM predictive variables consist of the grid-
average horizontal winds (@, v), liquid water potential
temperature (6,), and total water mixing ratio (g,). If
the SCM was implemented as a parameterization, these
four variables would already be predicted by the host
model. In addition, the SCM carries all six second mo-
ments arising from w, 6,, and g,. A single third moment
(w"?) is predicted. This type of model is sometimes re-
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ferred to as incomplete third-order closure model. The
governing equations are
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where R is the radiative heating rate, f is the Coriolis
parameter, and u, and v, are the geostrophic winds.
Here (dq,/0t)!,s and (06,/0t)1,, are large-scale moisture
and temperature forcings, respectively. Here g is the
gravity, and p, and 6, are the reference density and
potential temperature, respectively. For additional de-
tails, the reader is referred to Golaz et al. (2002a). The
PDF functional form used to close the buoyancy and
higher-order moments follows Larson and Golaz
(2005). One exception is the treatment of the PDF pa-
rameter 2. Instead of using Eq. (37) in Larson and
Golaz (2005), we keep &2 constant but include it in the
list of parameters to be calibrated.

Some aspects of the numerical integration have
changed compared to Golaz et al. (2002a). Many
higher-order turbulence moments are now discretized
semi-implicitly to improve numerical stability and allow
for longer time steps. Equations (A6)-(AS8) are now
solved for their steady-state solutions, thus making
them diagnostic. The form of the damping term in
(A11) has been altered. The change does not impact
the results significantly, but it allows for a semi-implicit
numerical treatment, which improves stability.
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